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The thermodynamic extremal principle is used for the treatment of the evolution of a binary
system under the assumption that all phases in the system are nearly stoichiometric with no
sources and sinks for vacancies in the bulk. The interfaces between the individual phases are
assumed to act as ideal sources and sinks for vacancies, and to have an infinite mobility.
Furthermore, it is assumed that several phases are nucleated in the contact plane of the diffusion
couple at the beginning of the computer experiment. Then, it is shown that the number of newly
nucleated phases determines the maximum number of polyfurcations (i.e., branching of a single
configuration into several distinct configurations) of the initial contact (Kirkendall) plane. The
model is demonstrated on a hypothetical binary system with four stoichiometric phases. The
inverse problem, namely, the determination of the tracer diffusion coefficients in newly nucle-
ated phases from the thicknesses of new phases and the positions of polyfurcated Kirkendall
planes, is treated too.
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1. Introduction

Kirkendall experiments seem to be very significant for
understanding the mechanism of diffusion; see the report on
Kirkendall’s seminal work, now more than 50 years later,
by Nakajima.[1] Such experiments have been performed also
on systems forming manifold, nearly stoichiometric phases
with the surprising result that the original single Kirkendall
plane splits into several planes. This effect is called a “poly-
furcation” of the Kirkendall plane. The Kirkendall plane is
a plane in the diffusion zone that is delineated by inert
markers. The initial position of this plane is located at the
contact plane of the diffusion couple. Paul et al.[2] have

treated the problem by a physicochemical approach, based
on the theory of reactive diffusion,[3-8] for one, two, and three
newly nucleated phases. This approach utilizes the kinetic pa-
rameters in the newly nucleated phases like the integrated in-
terdiffusion coefficient and the ratio of intrinsic fluxes.

It is necessary to note that the theory of reactive diffusion
more or less tacitly assumes ideal sources and sinks for
vacancies at the interfaces as well as at the infinite interface
mobility. This seems to be a realistic assumption for inco-
herent interfaces. Moreover, the analysis[2] assumes inactive
sources and sinks for vacancies in the bulk of the newly
nucleated phases and their stoichiometricity.

The aim of this article is to present an alternative model
to that of Paul et al.[2] for the diffusive phase transformation
in binary systems with multiple stoichiometric phases. This
new model is based on a purely thermodynamic treatment.
It is more general, allows for an arbitrary number of newly
nucleated phases, and utilizes thermodynamic data as the
tracer diffusion coefficients, molar Gibbs energies, and mo-
lar volumes in the stoichiometric phases. It is also shown
that the present treatment enables the solution of the inverse
problem, namely, the determination of tracer diffusion co-
efficients of components in the newly nucleated phases. The
model is demonstrated on a hypothetical binary system
forming four nearly stoichiometric phases. The behavior of
the Kirkendall plane is calculated with dependence on the
values of the tracer diffusion coefficients in the newly
nucleated phases.

2. The Model

Let us assume a binary system of components, A and B,
forming n stable stoichiometric phases Ari

B1−ri
, with ri be-

ing the mole fraction of the component A in the phase i,
0 � ri � 1, i � 1, . . . , n, and ri increasing with i (Fig. 1).
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The molar Gibbs energies of the phases (in their minima)
are denoted by gi, i � 1, . . . , n. If the partial molar volumes
of components A and B in individual phases i, �Ai, and �Bi
are known, the molar volume �i of the phase i is given by:

�i = ri�Ai + �1 − ri ��Bi (Eq 1)

As a starting configuration, the authors assume a diffusion
couple of unit cross section consisting of the phases Ar1

B1−r1
at the left side and Arn

B1−rn
at the right side of the

interface with inert markers on it. It is assumed that during
a negligible time interval very small nuclei of all other
phases are built at the original interface and they grow into
a sequence of phases, as schematically depicted in Fig. 2.
All newly nucleated phases contain some of the markers.
All phases are considered as single crystals without defects
available for sources and sinks for vacancies in the bulk.
The assumption of stoichiometricity guarantees a constant
chemical composition and a constant molar volume in each
phase. Because no sources and sinks for vacancies are as-
sumed in the bulk of each phase, this implies that both
diffusive fluxes, jAi and jBi, as well as the material velocity
must be constant in each region occupied by an individual
phase. The reason for the existence of fluxes is the fact that
a very small alteration of the mole fraction in each phase
causes large changes in the chemical potentials of both com-
ponents. The interfaces between the phases are considered
as incoherent, being freely mobile and acting as ideal
sources and sinks for vacancies.

Let us analyze the behavior of an interface between the
phases i and i + 1 where the diffusive fluxes jAi, jBi and jAi+1,
jBi+1 occur. Figure 3 shows an advanced stage of the system.
The balance between the fluxes at each interface is coupled
with both the interface migration and the thickening or thin-
ning (i.e., deposition or removal of new atomic layers) at the
interface. The second effect causes a motion of the lattices
of the individual phases relative to each other.

Let ui be the velocity of the interface between the phases
i and i + 1 relative to the lattice of the phase i, and let �i+1
be the velocity of the interface relative to the lattice of the
phase i + 1. The mass conservation for both the A and B
components leads to the equations (see section 3 in the
article by Fischer and Simha[9]):

uiri

�i
−

vi+1ri+1

�i+1
= jAi − jAi+1, i = 1, . . . , n − 1 (Eq 2)

ui�1 − ri�

�i
−

vi+1�1 − ri+1�

�i+1
= jBi − jBi+1, i = 1, . . . , n − 1

(Eq 3)

The velocities ui and vi can be calculated from Eq 2 and
3 as:

ui =
�i

ri − ri+1
�� jAi − jAi+1��1 − ri+1� − � jBi − jBi+1�ri+1�

i = 1, . . . , n − 1 (Eq 4)

vi+1 =
�i+1

ri − ri+1
��jAi − jAi+1��1 − ri� − � jBi − jBi+1�ri�

i = 1, . . . , n − 1 (Eq 5)

We consider a closed system with no deposition of mat-
ter at the surface of the system yielding the boundary con-
ditions:

jA1 = 0, jB1 = 0, jAn = 0, jBn = 0, v1 = 0 and un = 0 (Eq 6)

Fig. 1 Gibbs energy diagram for binary AB system with four
stoichiometric phases

Fig. 2 Schematic plot of nucleation stages at the interface with
deposited markers

Fig. 3 Definition of the kinetic parameters and of the system
geometry
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Then the rate of change of the thickness ḋi of the region of
phase i (Fig. 3) is given by:

d
.
i = ui − vi, i = 1, . . . , n (Eq 7)

With Eq 4 to 6, ḋi can be expressed by means of the inde-
pendent fluxes jAi and jBi, i � 2, . . . , n − 1.

If it is assumed that the left end of the specimen is fixed
and situated in the origin of a spatially fixed coordinate
system, one can determine the velocity wi of the lattice of
the phase i from:

wi+1 = wi + ui − vi+1, i = 1, . . . , n − 1 (Eq 8)

and with w1 � 0 as:

wi+1 = �
k=1

i

�uk − vk+1�, i = 1, . . . , n − 1 (Eq 9)

Using Eq 1, 4, and 5 in Eq 9, one obtains, after some
algebra:

wi = −�Ai jAi − �Bi jBi, i = 2, . . . , n − 1 (Eq 10)

which is a commonly used equation. If, however, the partial
molar volumes of components A and B in the individual
phases i, �Ai, and �Bi are not known explicitly (which may
be the case for stoichiometric phases) and only the molar
volumes �i are known, these quantities are sufficient to
determine the velocity wi by using Eq 4 and 5 in Eq 9 by a
more complicated expression.

The velocity Vi of the interface i between the phases i and
i + 1 can be calculated from:

Vi = �
k=1

i

d
.
k = �

k=1

i

�uk − vk�, i = 1, . . . , n − 1 (Eq 11)

The position Xi of the interface i at time t is given by the
integration of Eq 11 with respect to time as:

Xi = X0i + �
0

t

Vidt, i = 1, . . . , n − 1 (Eq 12)

where X0i is the position of the interface at time t � 0.
In some experimental studies of the Kirkendall effect in

multiphase systems,[10,11] the polyfurcation of the Kirken-
dall plane is evident. After a certain time of annealing, the
inert markers, which were originally positioned at the con-
tact plane of the two alloys welded together, are found at
different positions in the new phases nucleated at the con-
tact plane and grown during annealing. Thus, one may as-
sume that a new phase i nucleates at the contact region, and
its lattice carries some of the markers with the velocity wi.
This is given by Eq 9 or 10. However, one cannot exclude
that a specific interface crosses the Kirkendall plane by
migration, and then the Kirkendall plane with markers that

was originally positioned in a newly nucleated phase i is
later embedded in another phase or remains fixed at the
migrating interface. This makes the treatment of the calcu-
lation of the positions of the multiple Kirkendall planes
slightly more complicated. The authors do not assume any
drag of the markers by moving with an interface or any
pinning effect.

The actual positions Xi of the interfaces i are given by Eq
12, which can always be determined independently of the
positions of the Kirkendall planes. Let us assume that at
time t � 0 the position x0k of the Kirkendall plane k and its
actual correspondence to a phase l are known. Then, the
actual velocity of the Kirkendall plane k is wi, and the
position of the Kirkendall plane k at time t is given by:

xk = x0k + �
0

t

wldt (Eq 13)

The corresponding phase index l must be determined at any
time from the actual positions of the interfaces Xi and the
actual position of the Kirkendall plane xk. In the multiphase
Kirkendall experiments,[2] starting with a diffusion couple,
all of the positions x0k and X0i coincide and are equal to the
original position of the contact plane with markers. After the
two parts of the diffusion couple are brought into contact
and heated, nucleation of the new phases begins. During this
process, it is assumed that each individual marker becomes
captured in the bulk of one of the new phases. This scenario
of nucleation is schematically depicted in Fig. 2. This situ-
ation represents the starting condition in the modeling with
an already split Kirkendall plane and no singularity.

The kinetics of the system is now unambiguously deter-
mined by the independent diffusive fluxes jAi and jBi,
with i � 2, . . . , n − 1 being the free kinetic parameters
of the system. The actual values of the fluxes jAi and jBi,
i � 2, . . . , n − 1, can be determined by the application of
the thermodynamic extremal principle, which has been
worked out in detail by Svoboda et al.[12] and is based on
Onsager’s work on the maximum dissipation rate in a dif-
fusive process.[13]

2.1 Total Gibbs Energy and Its Rate of Change

The total Gibbs energy G of the system is given by

G = �
i=1

n gi

�i
di (Eq 14)

The molar Gibbs energies gi and the molar volumes �i are
supposed to be known and fixed quantities at a given tem-
perature. Then, the rate of change of the total Gibbs energy
can be calculated by using Eq 4 to 7 as:

Ġ = �
i=1

n

gi�� jAi − jAi+1�
1 − ri+1

ri − ri+1
− � jBi − jBi+1�

ri+1

ri − ri+1

− � jAi−1 − jAi�
1 − ri−1

ri−1 − ri
+ � jBi−1 − jBi�

ri−1

ri−1 − ri
� (Eq 15)
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The partial derivatives with respect to diffusive fluxes
are given by:

�Ġ

�jAi
= gi�1 − ri+1

ri − ri+1
+

1 − ri−1

ri−1 − ri
� − gi−1

�i−1

�i

1 − ri

ri−1 − ri

− gi+1

�i+1

�i

1 − ri

ri − ri+1
= −FAi, i = 2, . . . , n − 1

(Eq 16)

�Ġ

�jBi
= −gi� ri+1

ri − ri+1
+

ri−1

ri−1 − ri
� + gi−1

�i−1

�i

ri

ri−1 − ri

+ gi+1

�i+1

�i

ri

ri − ri+1
= −FBi, i = 2, . . . , n − 1

(Eq 17)

The quantities FAi and FBi can be understood as the driving
forces at a given temperature conjugated to the fluxes jAi
and jBi.

2.2 Total Gibbs Energy Dissipation

The Gibbs energy is assumed to dissipate only by bulk
diffusion. The migration of interfaces and thickening or
thinning are considered to not be connected with dissipa-
tion. Then the total dissipation in the system is given by
Svoboda et al.[12] as:

Q = �
i=2

n−1

RgT�idi� jAi
2

riD*Ai
+

jBi
2

�1 − ri�D*Bi
� (Eq 18)

where Rg is the gas constant, T is the absolute temperature,
and D*Ai and D*Bi are the tracer diffusion coefficients of com-
ponents A and B, respectively, in the phase i.

The partial derivatives of Q with respect to the indepen-
dent fluxes are given by:

�Q

�jAi
=

2RgT�idijAi

riD*Ai
, i = 2, . . . , n − 1 (Eq 19)

�Q

�jBi
=

2RgT�idi jBi

�1 − ri�D*Bi
, i = 2, . . . , n − 1 (Eq 20)

2.3 Kinetic Equations

The independent diffusive fluxes jAi and jBi, i � 2, . . . ,
n − 1 can be determined by application of the thermody-
namic extremal principle,[12] which leads to a set of linear
algebraic equations in the fluxes:

�Ġ

�jAi
=

1

2

�Q

�jAi
and −

�Ġ

�jBi
=

1

2

�Q

�jBi
, i = 2, . . . , n − 1 (Eq 21)

The matrix of the set of linear equations is diagonal, and
the solution of the problem can be performed easily as:

jAi = FAi

riD*Ai

RgT�idi
and jBi = FBi

�1 − ri� D*Bi

RgT�idi
, i = 2, . . . , n − 1

(Eq 22)

If one supposes that the values of di, i � 2, . . . , n − 1,
are practically zero at the time t � 0, then the integration of
the system of differential equations in Eq 7 yields, after the
insertion of Eq 4, 5, and 22, a solution of the so-called
parabolic type:

di = d̃i�t and ḋi = d̃i��2�t� → ḋi = di��2t�

i = 2, . . . , n − 1 (Eq 23)

with d̃i being parameters independent of time. Putting Eq 4,
5, 7, 22, and 23 together, one can eliminate the time, and
the problem is reduced to a set of nonlinear equations for
d̃i, i � 2, . . . , n − 1. Then, it is easy to also show that all
other kinetic parameters jAi, jBi, ui, �i, wi, and Vi are pro-
portional to 1/√t. Furthermore, the changes of the position of
each interface Xi − X0i, i � 1, . . . , n − 1, (Eq 12) are pro-
portional to √t, and this holds also for the changes of the
positions of the Kirkendall planes xk − x0k, if the Kirkendall
plane k remains always in the same phase. Then the veloc-
ities Vi are given by:

Vi = �Xi − X0i� � �2t�, i = 1, . . . , n − 1 (Eq 24)

Moreover, if the Kirkendall plane k always remains in the
same phase i, then the velocity wi can be calculated as:

wi = �xk − x0k� � �2t� (Eq 25)

2.4 Inverse Problem: Determination of Diffusion
Coefficients D *Ai and D *Bi

Let us assume that all values of gi, ri, and �i, i � 1, . . . ,
n are available for the n-phase system, and the tracer dif-
fusion coefficients D*Ai and D*Bi, i � 2, . . . , n − 1, (alto-
gether 2n − 4 diffusion coefficients) have to be determined
from one Kirkendall experiment. In the ideal case, if Kirk-
endall planes always remain in the same nucleated phase,
one has at disposal 2n − 3 independent kinetic parameters
(e.g., Vi, i � 1, . . . , n − 1, and wi, i � 2, . . . , n − 1), which
are given by Eq 24 and 25. Thus, if no or only one of the
Kirkendall planes leaves its original phase, the geometric
data measured on the specimen are still sufficient for the
determination of the tracer diffusion coefficients D*Ai
and D*Bi, i � 2, . . . , n − 1. By using 2n − 4 independent
kinetic parameters from the sets ḋi, i � 2, . . . , n − 1,
Vi, i � 1, . . . , n − 1 and wi, i � 2, . . . , n − 1, given by Eq
23 to 25, the diffusive fluxes jAi and jBi, i � 2, . . . , n − 1,
can be calculated by means of Eq 4 to 7 and 9. If ḋi,
i � 2, . . . , n − 1 and wi, i � 2, . . . , n − 1, are chosen as the
independent kinetic parameters, then the solution of the set
of 4n linear equations H · y � z provides the diffusive
fluxes jAi and jBi, i � 2, . . . , n − 1. The vector y of un-
knowns is given by:

yi = jAi, yn+i = jBi, y2n+i = ui, y3n+i = vi, i = 1, . . . , n
(Eq 26)

The matrix H and the right-hand side vector z are given in
the Appendix.
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An analogous set of equations can also be obtained if one
of the wi value is replaced by one of the vi values.

After determination of the diffusive fluxes jAi and jBi,
i � 2, . . . , n − 1, Eq 22 together with Eq 16 and 17 can be
used for the evaluation of the tracer diffusion coefficients
D*Ai and D*Bi, i � 2, . . . , n − 1. The whole procedure out-
lined in this paragraph is applied to the results of the simu-
lations presented in the following paragraph and leads to a
perfect reproduction of the diffusion coefficients.

3. Results of Simulations and Discussion

To demonstrate the model, n � 4 is chosen, and Eq 12
and 13 are integrated in time numerically. The molar vol-
umes of all phases are chosen to be the same, namely, �i �
7 × 10−6 m3 mol−1. The activation energies of all tracer
diffusion coefficients are EAi � EBi � 1.5 × 105 Jmol−1,
(D*ki � D0

ki exp[−Eki/(RgT)], k = A,B. The temperature T is
chosen as T � 1000 K. The vector of the values of gi is
chosen as g � (105,0,0,105)Jmol−1, the vector of the values
of ri as r � (0.2,0.4,0.6,0.8), and the initial values of di as
d0 � (10−3,10−8,10−8,10−3)m. The initial positions of the
Kirkendall planes are chosen in the center of phases 2 and
3. Then the only parameters kept free are the vectors D0

A and
D0

B of the preexponential factors D0
Ai, and D0

Bi of the tracer
diffusion coefficients.

The first simulation is performed for a “symmetric” case,
D0

A � (10−5, 10−5, 2 � 10−5, 10−5) and D0
B � (10−5, 2 � 10−5,

10−5, 10−5), which is depicted in Fig. 4. From Fig. 4 as well
as from the following figures it is evident that the parabolic
law holds. The selected diffusion coefficients ensure the
deposition of atoms at the central interface, and, thus, sym-
metric bifurcation of the Kirkendall plane occurs. If the
symmetry of the problem is destroyed by choosing D0

A �
(10−5, 10−5, 3 � 10−5, 10−5) and D0

B � (10−5, 2 � 10−5, 10−5,
10−5) (by increasing the value of D0

A3), the results remain
qualitatively the same (compare Fig. 4 and 5). A further
increase of D0

A3 (D0
A � (10−5, 10−5, 5 � 10−5, 10−5) and

D0
B � (10−5, 2 � 10−5, 10−5, 10−5)), however, causes the

Kirkendall plane, originally positioned in phase 3, to be
very quickly absorbed by phase 2 and both, practically un-
separated Kirkendall planes remain in the bulk of phase 2
(Fig. 6).

For the values of vectors D0
A � (10−5, 2 � 10−5, 10−5,

10−5) and D0
B � (10−5, 10−5, 2 � 10−5, 10−5), there is a

collection of atoms at the central interface, and both, origi-
nally slightly separated Kirkendall planes get together and
are fixed at the central interface (Fig. 7). The situation re-
mains qualitatively unchanged, if D0

A2 is increased (Fig. 8).
From the simulations, it is evident that the number of

Kirkendall planes cannot increase during the computer ex-
periment. This implies that if no markers are present in one
of the newly nucleated phases at the beginning of the simu-
lation, then the phase remains free of markers during the
whole simulation unless a distinct Kirkendall plane moves
into the phase from another phase. A new phase can nucle-

Fig. 6 Evolution of the positions of the interfaces and of the
Kirkendall planes for D0

A � (10−5, 10−5, 5 � 10−5, 10−5) and D0
B �

(10−5, 2 � 10−5, 10−5, 10−5)

Fig. 4 Evolution of the positions of the interfaces and of the
Kirkendall planes for D0

A � (10−5, 10−5, 2 � 10−5, 10−5) and D0
B �

(10−5, 2 � 10−5, 10−5, 10−5)

Fig. 5 Evolution of the positions of the interfaces and of the
Kirkendall planes for D0

A � (10−5, 10−5, 3 � 10−5, 10−5) and D0
B �

(10−5, 2 � 10−5, 10−5, 10−5)
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ate without markers if it nucleates a little bit later at an
already newly created marker-free interface. In other words,
splitting of the Kirkendall plane does not occur unless the
nucleation process of the new phases ensures an initial re-
distribution of the markers into at least two new phases
(e.g., according to the scenario depicted in Fig. 2). Such a
nucleation process is obviously tacitly assumed also in the
model by Paul et al.[2]: the nucleation process automatically
redistributes the markers into all newly nucleated phases,
and the phases with no markers are those that lose the mark-
ers during their growth. On this point, the model of Paul et
al.[2] and the present model are in accordance.

The mechanism of splitting of the Kirkendall plane that
is depicted in Fig. 2 is supported by the extensive work by
Loo,[14] who used thin tungsten wires instead of thoria par-
ticles as markers. The wires were ruptured, and their frag-
ments were present in all newly nucleated phases after the
annealing. Moreover, Loo[14] also used square microinden-

tations at the specimen surface and observed their splitting
in two halves accompanied by different shifts of the halves.
The behavior of the microindentations can also be explained
by the present model.

4. Summary

A new model for the phase transformations in binary
systems forming stoichiometric phases is developed by
means of the thermodynamic extremal principle. No sources
and sinks for vacancies are assumed in the bulk of the
phases. The interfaces are assumed to possess an infinite
mobility and to act as ideal sources and sinks for vacancies.
The model predicts the time evolution of positions of the
interfaces as well as of the polyfurcated Kirkendall plane.
The parabolic law for the positions of interfaces and Kirk-
endall planes is confirmed by the model. The problem for-
mulation can be inverted, and the tracer diffusion coeffi-
cients of both components in the newly nucleated phases
can be calculated from the positions of interfaces and Kirk-
endall planes. The behavior of the Kirkendall planes de-
pending of the tracer diffusion coefficients of both compo-
nents in the newly nucleated phases is simulated and
discussed. It is also shown that the redistribution of the
markers into newly nucleated phases at the original inter-
face of the diffusive couple (e.g., according to the scenario
depicted in Fig. 2) is the necessary condition for the poly-
furcation of the Kirkendall plane.
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Appendix

In the case, that the values of the independent kinetic
parameters ḋi, i � 2, . . . , n − 1, and wi, i � 2, . . . , n − 1,
are known, linear relations for the kinetic parameters jAi, jBi,
ui and �i, i � 1, . . . , n, can be obtained by considering the
mass balance in the system expressed by Eq 4 to 9. A set of
linear equations can be written as

Hy = z (Eq A1)

with the coefficient matrix H of the rank 4n and the solution
vector yT � (jAi, jBi, ui, �i) consisting of 4n unknowns. The
components of the coefficient matrix H and that of the
right-hand side vector z write as following:

The first n − 1 equations follow from Eq 4 as:

Hi,i =
�i � �1 − ri+1�

ri − ri+1
, Hi,i+1 = −Hi,i Hi,n+i = −

�i � ri+1

ri − ri+1

Hi,n+i+1 = −Hi,n+i Hi,2n+i = −1 zi = 0 i = 1, . . . , n − 1
(Eq A2)

As the n-th and (n+1)-th equations the boundary conditions
un � 0 and �1 � 0 (Eq 6) are chosen yielding

Hn,3n = 1, zn = 0 and Hn+1,3n+1 = 1 zn+1 = 0
(Eq A3)

Next n − 1 equations follow from Eq 5 as:

Hn+i+1,i =
�i+1 � �1 − ri�

ri − ri+1
, Hn+i+1,i+1 = −Hn+i+1,i Hn+i+1,n+i

= −
�i+1 � ri

ri − ri+1
, Hn+i+1,n+i+1 = −Hn+i+1,n+i Hn+i+1,3n+i+1

= −1, zn+i+1 = 0, i = 1, . . . , n − 1 (Eq A4)

The boundary condition jB1 � 0 from Eq 6 represents the
(2n + 1)-th equation as:

H2n+1,n+1 = 1, z2n+1 = 0 (Eq A5)

Equation 7 provide the next n-2 equations with the labels
ranging from 2n + 2 to 3n − 1 as:

H2n+i,2n+i = 1, H2n+i,3n+i = −1 z2n+i = ḋi i = 2, . . . , n − 1
(Eq A6)

The 3n-th equation is given by the boundary condition
jA1 � 0, (Eq 6), as:

H3n,1 = 1, z3n = 0 (Eq A7)

The next n-2 linear relations 3n + 1 to 4n − 2 follow from
Eq 9 as:

H3n+i,2n+k = 1, H3n+i,3n+k+1 = −1 and z3n+i = wi+1

i = 1, . . . , n − 2 k = 1, . . . , i (Eq A8)

The last two equations with the labels 4n − 1 and 4n rep-
resent the boundary conditions jAn � 0 and jBn � 0, (Eq 6),
yielding:

H4n−1,n = 1, z4n−1 = 0 and H4n,2n = 1 z4n = 0
(Eq A9)
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